Εκπαίδευση χωρίς επόπτη
Αυτοοργανούμενος Πίνακας Χαρακτηριστικών
Self Organizing (Feature) Map
Εκπαίδευση χωρίς επόπτη
Αυτοοργανούμενος Πίνακας Χαρακτηριστικών
Self Organizing (Feature) Map

Ο ΑΠΧ είναι αλγόριθμος που αναπτύχθηκε από τον Τευνο Kohonen καθηγητή της Ακαδημίας της Φινλανδίας (1982a,b,1989,1990a,1995) στο πλαίσιο έρευνας για την αναγνώριση ομιλίας

'I just wanted an algorithm that would effectively map similar patterns (pattern vectors close to each other in the input signal space) onto contiguous locations in the output space.'
(Kohonen, 1995)
Τυπικό παράδειγμα

- ομαδοποίηση χρωμάτων (3Δ) σε δύο διαστάσεις
- ΑΠΧ που έχει μάθει να αναγνωρίζει 8 διαφορετικά χρώματα (δεξιά) ως 3Δ διανύσματα (R, G, B).
- Το ΑΠΧ έχει μάθει να αναπαριστεί τα χρώματα αυτά σε 2Δ χώρο (αριστερά)
- Παρόμοιες χρωματικές ιδιότητες ομαδοποιούνται γειτονικά
Εκπαίδευση χωρίς επόπτη
Αυτοοργανούμενος Πίνακας Χαρακτηριστικών
Self Organizing (Feature) Map

Αρχιτεκτονική του δικτύου ΑΠΧ

- Ένα επίπεδο εισόδου με εισόδους όσες η διάσταση των
dιανυσμάτων εκπαίδευσης
- Ένα επίπεδο εξόδου (Kohonen Layer) με τοπολογία

Νευρώνες διατάσσονται σε κανονικό πλέγμα και συνδέονται με
όλες τις εισόδους

Κάθε νευρώνας έχει:
- τοπολογία X, Y
- βάρη, όσα και οι είσοδοι
Εκπαίδευση χωρίς επόπτη
Αυτοοργανούμενος Πίνακας Χαρακτηριστικών
Self Organizing (Feature) Map

1. Αρχικοποίηση
 • Τα βάρη των συνάψεων με τιμές που προκύπτουν από την πρόσθεση μικρών τυχαίων αριθμών στη μέση τιμή των ανυσμάτων του συνόλου εκπαίδευσης
 • Ο ρυθμός εκμάθησης α με μια μεγάλη τιμή (συνήθως μεταξύ 0,2 και 0,5)
 • Το μήκος πλευράς τετραγώνου γειτονιάς d με τιμή που είναι ίση με το μισό του εύρους του πλέγματος/κάναβου

2. Επιλέγεται ένα τυχαίο άνυσμα από το σύνολο εκπαίδευσης.
3. Υπολογίζεται η έξοδος κάθε νευρώνα ως η Ευκλείδεια απόσταση μεταξύ του ανύσματος και του αντίστοιχου βάρους κάθε νευρώνα
4. Ένας νευρώνας ανακηρύσσεται νικητής εάν ελαχιστοποιεί την απόσταση
5. Τα βάρη των συνάψεων στη γειτονιά του νευρώνα νικητή ανανεώνονται
6. Αυξάνεται η μεταβλητή επανάληψης κατά ένα και ελαττώνονται οι τιμές των α, d τείνοντας στο 0
1. Αρχικοποίηση
 - Μετρητής επανάληψης: \(t=0 \) (ορισμός μέγιστου πλήθους \(T=100000 \))
 - Βάρη των συνάψεων: \(u[k,j](t)=\text{small}_\text{random}+\text{mean}(X) \)
 - \(k=\)νευρώνες ανταγωνισμού, \(j=0...m-1 \) είσοδοι
 - Ρυθμός εκμάθησης \(a(t)=0,2...0,5 \)
 - Μήκος πλευράς τετραγώνου γειτονιάς \(d(t)=1/2 \) εύρους του κάναβου
2. Επιλογή τυχαίου πρωτότυπου από το σύνολο εκπαίδευσης: \(x(t) \)
3. Υπολογισμός εξόδου κάθε νευρώνα:
 \[
 o_k(t) = \| x(t) - u_k(t) \| = \sqrt{\sum_{j=0}^{m-1} (x_j(t) - u_{kj}(t))^2}
 \]
4. Ανακήρυξη νευρώνα νικητή (ελάχιστη απόσταση): \(o_c(t) = \min\{o_k(t)\} \)
5. Ανανέωση βαρών γειτονιάς νικητή:
 \[
 \Delta u_{kj} = \begin{cases}
 a(t) \cdot (x_j(t) - u_{kj}(t)) & \text{αν } k \in N_c \\
 0 & \text{αν } k \notin N_c
 \end{cases}
 \]
 \[
 u_{kj}(t+1) = u_{kj}(t) + \Delta u_{kj}(t)
 \]
6. Ενημέρωση μεταβλητών επανάληψης: \(t=t+1 \) και \(a(t) = a(0) \cdot (1- \frac{t}{T}) \)
 \(d(t) = d(0) \cdot (1- \frac{t}{T}) \)
Έστω το 4×4 δίκτυο με το εξής επίπεδο εξόδου:

• όταν t=58, Τ=100, a(0)=0,5 & d(0)=3
• χρησιμοποιείται η ευκλείδεια απόσταση

Να βρεθούν οι τιμές του πίνακα
• για t=59 & διάνυσμα εισόδου x=[0,1 -0,95]'
Εκπαίδευση χωρίς επόπτη
Αυτοοργανούμενος Πίνακας Χαρακτηριστικών
Self Organizing (Feature) Map

Οι Ευκλείδειες αποστάσεις του προτύπου από το πρωτότυπο που περιγράφουν τα βάρη κάθε νευρώνα είναι:

\[D_i = \sqrt{\sum (x_{ij} - x_0)^2} \]

Νευρώνας "νικητής"

Ενημέρωση γειτονιάς και ρυθμού εκμάθησης:

\[d(59) = d(0) \cdot \left(1 - \frac{t}{T} \right) = 3 \cdot \left(1 - \frac{58}{100} \right) = 1.26 \]

\[\alpha(59) = \alpha(0) \cdot \left(1 - \frac{t}{T} \right) = 0.5 \cdot \left(1 - \frac{58}{100} \right) = 0.21 \]
Εκπαίδευση χωρίς επόπτη
Αυτοοργανούμενος Πίνακας Χαρακτηριστικών
Self Organizing (Feature) Map

Παράδειγμα

Νευρώνας "νικητής": 10
Γειτονιά: d(59)=1,26
Ρυθμός: a(59)=0,21

\[x = [0,1 \,-0,95] \]

Κάθε βάρος \(w \) που ανήκει σε νευρώνα που βρίσκεται σ' αυτή την γειτονιά θα πάρει τιμή σύμφωνα με τη σχέση

\[w(t+1) = w(t) + a(t)(x - w(t)) \]

\[w(t+1) = w(t) + 0.21(x - w(t)) \]

Το επίπεδο εξόδου θα γίνει
Εκπαίδευση χωρίς επόπτη
Αυτοοργανούμενος Πίνακας Χαρακτηριστικών
(Self Organizing (Feature) Map)

Παράδειγμα

Network Architecture

<table>
<thead>
<tr>
<th></th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>0</td>
<td>$\sqrt{3}$</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>x_2</td>
<td>0</td>
<td>$\sqrt{2}$</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>x_3</td>
<td>0</td>
<td>$\sqrt{3}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Πρότυπα εκπαίδευσης:

- $x_1 = [1 \ 1 \ 0 \ 0]^T$
- $x_2 = [0 \ 0 \ 0 \ 1]^T$
- $x_3 = [1 \ 0 \ 0 \ 0]^T$
- $x_4 = [0 \ 0 \ 1 \ 1]^T$

- $n=4$, $m=2$
- Γειτονιά $d(0)=0$
- Ρυθμός μάθησης:
 - $a(1...4)=0,6$, $a(5...8)=0,3$, $a(9..12)=0,15$

Θα εξεταστεί μία (1) εποχή

Αρχικά βάρη:

- $w_1 = [0,2 \ 0,6 \ 0,5 \ 0,9]^T$
- $w_2 = [0,8 \ 0,4 \ 0,7 \ 0,3]^T$
Εκπαίδευση χωρίς επόπτη
Αυτοοργανούμενος Πίνακας Χαρακτηριστικών
Self Organizing (Feature) Map

Παρουσίαση του πρώτου Προτύπου: \[x_1 = [1 \ 1 \ 0 \ 0]^T \]

\[D(i, j) = \sqrt{\sum (x_{jk} - w_{ik})^2} \]

\[(k = 1 \ldots n, i = 1 \ldots 2, j = 1) \]

\[D(1,1) = \sqrt{0.8^2 + 0.4^2 + (-0.5)^2 + (-0.1)^2} = 1.03 \]

\[D(2,1) = \sqrt{(0.2)^2 + (0.6)^2 + (-0.7)^2 + (-0.3)^2} = 0.99 \]

\[w_2 = [0.8 \ 0.4 \ 0.7 \ 0.3]^T + 0.6([1 \ 1 \ 0 \ 0]^T - [0.8 \ 0.4 \ 0.7 \ 0.3]^T) \]

\[= [0.92 \ 0.76 \ 0.28 \ 0.12]^T \]
Εκπαίδευση χωρίς επόπτη
Αυτοοργανούμενος Πίνακας Χαρακτηριστικών
Self Organizing (Feature) Map

Παρουσίαση του δεύτερου Προτύπου: \(x_2 = [0 \ 0 \ 0 \ 1]^T \)

\[
D(i, j) = \sqrt{\sum (x_{jk} - w_{ik})^2}, \quad (k = 1 \ldots n, i = 1 \ldots 2, j = 2)
\]

\[
D(1,2) = \sqrt{(-0,2)^2 + (-0,6)^2 + (-0,5)^2 + 0,1^2} = 0,81
\]

\[
D(2,2) = \sqrt{(-0,92)^2 + (-0,76)^2 + (-0,28)^2 + 0,88^2} = 1,51
\]

\[
w_1 = [0,2 \ 0,6 \ 0,5 \ 0,9]^T + 0,6([0 \ 0 \ 0 \ 1]^T - [0,2 \ 0,6 \ 0,5 \ 0,9]^T)
\]

\[
= [0,08 \ 0,24 \ 0,20 \ 0,96]^T
\]
Εκπαίδευση χωρίς επόπτη

Αυτοοργανούμενος Πίνακας Χαρακτηριστικών
Self Organizing (Feature) Map

Παρουσίαση του τρίτου Προτύπου:

\[x_3 = [1 \ 0 \ 0 \ 0]^T \]

\[
D(i, j) = \sqrt{\sum (x_{jk} - w_{ik})^2}, \quad (k = 1 \ldots n, i = 1 \ldots 2, j = 3)
\]

\[
D(1,3) = \sqrt{0,92^2 + (-0,24)^2 + (-0,2)^2 + (-0,96)^2} = 1,37
\]

\[
D(2,3) = \sqrt{0,08^2 + (-0,76)^2 + (-0,28)^2 + (-0,12)^2} = 0,82
\]

\[
w_2 = [0,92 \ 0,76 \ 0,28 \ 0,12]^T + 0,6([1 \ 0 \ 0 \ 0]^T - [0,92 \ 0,67 \ 0,28 \ 0,12]^T)
\]

\[= [0,97 \ 0,30 \ 0,11 \ 0,05]^T \]
Παρουσίαση του τέταρτου Προτύπου:

\[x_4 = [0 \ 0 \ 1 \ 1]^T \]

\[
D(i, j) = \sqrt{\sum (x_{jk} - w_{ik})^2}, \quad (k = 1 \ldots n, i = 1 \ldots 2, j = 4)
\]

\[
D(1,4) = \sqrt{(-0,08)^2 + (-0,24)^2 + 0,8^2 + 0,04^2} = 0,84
\]

\[
D(2,4) = \sqrt{(-0,97)^2 + (-0,3)^2 + 0,89^2 + 0,95^2} = 1,65
\]

\[
w_1 = [0,08 \ 0,24 \ 0,20 \ 0,96]^T + 0,6([0 \ 0 \ 1 \ 1]^T - [0,08 \ 0,24 \ 0,20 \ 0,96]^T)
\]

\[
= [0,03 \ 0,10 \ 0,68 \ 0,98]^T
\]
Εκπαίδευση χωρίς επόπτη
Αυτοοργανούμενος Πίνακας Χαρακτηριστικών
Self Organizing (Feature) Map

Μετά από αρκετές εποχές και επαναλήψεις:

\[
\begin{align*}
 w_1 &= [0 \, 0 \, 0.5 \, 1.0]^T \\
 w_2 &= [1.0 \, 0.5 \, 0 \, 0]^T
\end{align*}
\]

Τελική ομαδοποίηση:

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(w_1)</th>
<th>(w_2)</th>
<th>Νευρώνας</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1)</td>
<td>1.80</td>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>(x_2)</td>
<td>0.5</td>
<td>1.5</td>
<td>1</td>
</tr>
<tr>
<td>(x_3)</td>
<td>1.5</td>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>(x_4)</td>
<td>0.5</td>
<td>1.80</td>
<td>1</td>
</tr>
</tbody>
</table>
Εκπαίδευση χωρίς επόπτη
Αυτοοργανούμενος Πίνακας Χαρακτηριστικών
Self Organizing (Feature) Map

Που ταξινομείται πλέον ένα νεοεμφανιζόμενο Πρότυπο:

\[x_5 = [1 \ 1 \ 1 \ 0]^T \]

\[D(i,j) = \sqrt{\sum (x_{jk} - w_{ik})^2} \quad (k = 1 \ldots n, i = 1 \ldots 2, j = 5) \]

\[D(1,5) = \sqrt{1^2 + 1^2 + 0,5^2 + (-1)^2} = 1,8 \]

\[D(2,5) = \sqrt{0^2 + 0,5^2 + 1^2 + 0^2} = 1,12 \]